Изобрели ли люди математику или это фундаментальная часть существования? ответ ученых

Курсор

Математика подобна языку: она может описывать реальные вещи в мире, но она не «существует» вне умов людей, которые ее используют. Но пифагорейская школа мысли в Древней Греции придерживалась иного взгляда. Его сторонники считали, что реальность в основе своей математична. Спустя более 2 000 лет философы и физики начинают серьезно относиться к этой идее.

Сэм Барон, доцент Австралийского католического университета, в новой статье утверждает, что математика - это важный компонент природы, который структурирует физический мир.

Об этом сообщает sciencealert.com.

Медоносные пчелы и шестиугольники

Пчелы в ульях производят гексагональные соты. Почему?

Согласно математической гипотезе о сотах, шестиугольники - самая эффективная форма для мозаики плоскости. Если вы хотите полностью покрыть поверхность плиткой одинаковой формы и размера, сохраняя при этом минимальную общую длину периметра, используйте шестиугольники.

Чарльз Дарвин рассуждал, что пчелы эволюционировали, чтобы использовать эту форму, потому что они производят самые большие клетки для хранения меда и наименьшего количества энергии для производства воска.

Гипотеза о сотах была впервые предложена в древние времена, но была доказана только в 1999 году математиком Томасом Хейлзом.

Цикады и простые числа

Вот еще один пример. Есть два подвида североамериканских периодических цикад, которые большую часть жизни живут в земле. Затем каждые 13 или 17 лет (в зависимости от подвида) цикады появляются большими стаями в течение примерно двух недель.

Почему 13 и 17 лет? Почему не 12 и 14? Или 16 и 18? Одно из объяснений апеллирует к тому факту, что 13 и 17 - простые числа.

Представьте, что у цикад есть ряд хищников, которые также проводят большую часть своей жизни в земле. Цикадам нужно вылезать из земли, когда их хищники спят. Предположим, есть хищники с жизненным циклом 2, 3, 4, 5, 6, 7, 8 и 9 лет. Как лучше всего их всех избежать?

Нужно сравнить 13-летний жизненный цикл и 12-летний жизненный цикл. Когда цикада с 12-летним жизненным циклом выходит из-под земли, 2-летние, 3-летние и 4-летние хищники также вылетают из-под земли, потому что 2, 3 и 4 все делятся на 12 поровну. Когда цикада с 13-летним жизненным циклом выходит из-под земли, ни один из ее хищников не выйдет из-под земли, потому что ни один из 2, 3, 4, 5, 6, 7, 8 или 9 не делится равномерно на 13. То же верно и для 17.

Похоже, эти цикады эволюционировали, чтобы использовать основные факты о числах.

Создание или открытие?

Как только мы начнем искать, легко найти другие примеры. От формы мыльных пленок до конструкции шестерен в двигателях, расположения и размера зазоров в кольцах Сатурна - математика повсюду.

Если математика объясняет так много всего, что мы видим вокруг, то маловероятно, что математика - это то, что мы создали. Альтернативой является открытие математических фактов: не только людьми, но и насекомыми, мыльными пузырями, двигателями внутреннего сгорания и планетами.

Что думал Платон?

Но если мы что-то открываем, что это такое? У древнегреческого философа Платона был ответ. Он думал, что математика описывает реально существующие объекты.

Для Платона эти объекты включали числа и геометрические фигуры. Сегодня мы можем добавить в список более сложные математические объекты, такие как группы, категории, функции, поля и кольца. Платон также утверждал, что математические объекты существуют вне пространства и времени. Но такой взгляд только усугубляет загадку того, как математика что-либо объясняет.

Объяснение включает в себя демонстрацию того, как одно в мире зависит от другого. Если математические объекты существуют в царстве, отличном от мира, в котором мы живем, они, похоже, не могут иметь отношения к чему-либо физическому.

Древние пифагорейцы соглашались с Платоном в том, что математика описывает мир объектов. Но, в отличие от Платона, они не думали, что математические объекты существуют за пределами пространства и времени. Вместо этого они считали, что физическая реальность состоит из математических объектов так же, как материя состоит из атомов.

Если реальность состоит из математических объектов, то легко увидеть, как математика может сыграть роль в объяснении мира вокруг нас.

За последнее десятилетие два физика выступили в защиту пифагорейской позиции: шведско-американский космолог Макс Тегмарк и австралийский физик-философ Джейн Макдоннелл.

Тегмарк утверждает, что реальность - это всего лишь один большой математический объект. Если это кажется странным, подумайте о том, что реальность - это симуляция. Моделирование - это компьютерная программа, которая представляет собой своего рода математический объект.

Взгляды Макдоннелла более радикальны. Она считает, что реальность состоит из математических объектов и умов. Математика - это то, как Вселенная, которая осознает себя, познает себя.

По словам Барона, мир состоит из двух частей: математики и материи. Математика придает материи ее форму, а материя придает математике ее сущность. Математические объекты обеспечивают структурную основу для физического мира.

Будущее математики

Барон считает, что пифагореизм заново открывается в физике: «В прошлом веке физика становилась все более и более математической, обращаясь к, казалось бы, абстрактным областям исследований, таким как теория групп и дифференциальная геометрия, в попытке объяснить физический мир. Поскольку граница между физикой и математикой стирается, становится все труднее сказать, какие части мира являются физическими, а какие - математическими».

Однако он удивлен, что философы так долго пренебрегали пифагореизмом.

«Я считаю, что это скоро изменится. Пришло время пифагорейской революции, которая обещает радикально изменить наше понимание реальности», - отметил он.

Математическая головоломка, которая взорвала Интернет. Нет ничего лучше сложной математической головоломки.

Ранее Курсор писал, что разведка Британии опубликовала «самую сложную головоломку». Головоломка состоит из 12 пазлов.
Разработанный в Израиле ИИ создает самые популярные в мире математические головоломки. В Израиле появился новый умный математик, который выдвигает интересные гипотезы, чтобы математики и те, кто любит вычисления, могли доказать или опровергнуть их.
Простая математическая задача вызвала у пользователей бурные обсуждения. Пользователь Twitter под ником @iambuterastann опубликовал простую математическую задачу, которая поставила в тупик многих юзеров сети. Они не смогли прийти к единому мнению насчет правильного ответа.
Напомним, Курсор сообщал, что известный блогер Тим Урбан опубликовал на своем сайте задачу, которая взорвала интернет.